z-logo
Premium
Analysis of the energy‐based swing‐up control for the double pendulum on a cart
Author(s) -
Xin X.
Publication year - 2011
Publication title -
international journal of robust and nonlinear control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.361
H-Index - 106
eISSN - 1099-1239
pISSN - 1049-8923
DOI - 10.1002/rnc.1601
Subject(s) - control theory (sociology) , jacobian matrix and determinant , double pendulum , mathematics , pendulum , mechanical system , energy (signal processing) , degrees of freedom (physics and chemistry) , inverted pendulum , displacement (psychology) , mathematical analysis , physics , computer science , nonlinear system , control (management) , psychology , statistics , quantum mechanics , artificial intelligence , psychotherapist
Designing and analyzing controllers for mechanical systems with underactuation degree (difference between the number of degrees of freedom and that of inputs) greater than one is a challenging problem. In this paper, for the double pendulum on a cart, which has three degrees of freedom and only one control input, we study an unsolved problem of analyzing the energy‐based swing‐up control which aims at controlling the total mechanical energy of the cart‐double‐pendulum system, the velocity and displacement of the cart. Under the energy‐based controller, we show that for all initial states of the cart‐double‐pendulum system, the velocity and displacement of the cart converge to their desired values. Then, by using a property of the mechanical parameters of the double pendulum, we show that if the convergent value of the total mechanical energy is not equal to the potential energy at the up–up equilibrium point, where two links are in the upright position, then the system remains at the up–down, down–up, and down–down equilibrium points, where two links are in the upright–down, down–upright, and down–down positions, respectively. Moreover, we show that each of these three equilibrium points is strictly unstable in the closed‐loop system by showing that the Jacobian matrix valued at each equilibrium point has at least one eigenvalue in the open right half plane. This shows that for all initial states with the exception of a set of Lebesgue measure zero, the total mechanical energy converges to the potential energy at the up–up equilibrium point. This paper provides insight into the energy‐based control approach to mechanical systems with underactuation degree greater than one. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here