Premium
Application of the dynamic high‐gain scaling methodology to servocompensator design
Author(s) -
Krishnamurthy P.,
Khorrami F.
Publication year - 2008
Publication title -
international journal of robust and nonlinear control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.361
H-Index - 106
eISSN - 1099-1239
pISSN - 1049-8923
DOI - 10.1002/rnc.1365
Subject(s) - backstepping , control theory (sociology) , scaling , servomechanism , robustness (evolution) , computer science , dynamic scaling , control engineering , controller (irrigation) , adaptive control , control (management) , mathematics , engineering , artificial intelligence , agronomy , biochemistry , chemistry , geometry , biology , gene
The error‐feedback servomechanism problem is addressed for a general class of strict‐feedback‐like systems. We provide two error‐feedback control designs based on our recent results on adaptive output‐feedback based on dynamic high‐gain scaling. One control design is of a dual high‐gain observer/controller structure, whereas the other control design utilizes a backstepping‐based controller in conjunction with a dynamic high‐gain scaling‐based observer. Owing to the particular robustness properties offered by a dynamic high‐gain scaling‐based controller and a backstepping‐based controller, the two designs require slightly different sets of assumptions on the system. Both design techniques allow the system to contain both unknown functions and uncertain appended input‐to‐state stable dynamics. Copyright © 2008 John Wiley & Sons, Ltd.