z-logo
Premium
Non‐diagonal MIMO QFT controller design reformulation
Author(s) -
GarciaSanz Mario,
Eguinoa Irene,
Bennani Samir
Publication year - 2009
Publication title -
international journal of robust and nonlinear control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.361
H-Index - 106
eISSN - 1099-1239
pISSN - 1049-8923
DOI - 10.1002/rnc.1362
Subject(s) - quantitative feedback theory , mimo , diagonal , control theory (sociology) , generalization , diagonal matrix , controller (irrigation) , computer science , mathematics , robust control , control system , control (management) , engineering , channel (broadcasting) , telecommunications , mathematical analysis , agronomy , geometry , artificial intelligence , electrical engineering , biology
This paper presents a reformulation of the full‐matrix quantitative feedback theory (QFT) robust control methodology for multiple‐input–multiple‐output (MIMO) plants with uncertainty. The new methodology includes a generalization of previous non‐diagonal MIMO QFT techniques; avoiding former hypotheses of diagonal dominance; simplifying the calculations for the off‐diagonal elements, and then the method itself; reformulating the classical matrix definition of MIMO specifications by designing a new set of loop‐by‐loop QFT bounds on the Nichols Chart, which establish necessary and sufficient conditions; giving explicit expressions to share the load among the loops of the MIMO system to achieve the matrix specifications; and all for stability, reference tracking, disturbance rejection at plant input and output, and noise attenuation problems. The new methodology is applied to the design of a MIMO controller for a spacecraft flying in formation in a low Earth orbit. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom