Open Access
A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation
Author(s) -
Enatsu Noritoshi,
Miyatsuka Isao,
An Le My,
Inubushi Miki,
Enatsu Kunihiro,
Otsuki Junko,
Iwasaki Toshiroh,
Kokeguchi Shoji,
Shiotani Masahide
Publication year - 2022
Publication title -
reproductive medicine and biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.005
H-Index - 22
eISSN - 1447-0578
pISSN - 1445-5781
DOI - 10.1002/rmb2.12443
Subject(s) - blastocyst , in vitro fertilisation , computer science , blastocyst transfer , visualization , artificial intelligence , assisted reproductive technology , andrology , pregnancy , embryo , medicine , biology , embryogenesis , infertility , genetics , microbiology and biotechnology
Abstract Purpose The purpose of the study was to invent and evaluate the novel artificial intelligence (AI) system named Fertility image Testing Through Embryo (FiTTE) for predicting blastocyst viability and visualizing the explanations via gradient‐based localization. Methods The authors retrospectively analyzed 19 342 static blastocyst images with related inspection histories from 9961 infertile patients who underwent in vitro fertilization. Among these data, 17 984 cycles of single‐blastocyst transfer were used for training, and data from 1358 cycles were used for testing purposes. Results The prediction accuracy for clinical pregnancy achieved by a control model using conventional Gardner scoring system was 59.8%, and area under the curve (AUC) was 0.62. FiTTE improved the prediction accuracy by using blastocyst images to 62.7% and AUC of 0.68. Additionally, the accuracy achieved by an ensemble model using image plus clinical data was 65.2% and AUC was 0.71, representing an improvement in prediction accuracy. The visualization algorithm showed brighter colors with blastocysts that resulted in clinical pregnancy. Conclusions The authors invented the novel AI system, FiTTE, which could provide more precise prediction of the probability of clinical pregnancy using blastocyst images secondary to single embryo transfer than the conventional Gardner scoring assessments. FiTTE could also provide explanation of AI prediction using colored blastocyst images.