Premium
Let biodegradation promote in‐situ soil venting
Author(s) -
Newman William A.,
Martinson Michael M.
Publication year - 1992
Publication title -
remediation journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.762
H-Index - 27
eISSN - 1520-6831
pISSN - 1051-5658
DOI - 10.1002/rem.3440020306
Subject(s) - biodegradation , soil vapor extraction , volatilisation , environmental remediation , environmental science , gasoline , remedial action , waste management , groundwater remediation , environmental chemistry , contamination , environmental engineering , chemistry , engineering , ecology , organic chemistry , biology
Although vapor extraction systems (VES) certainly help remediate volatile hydrocarbons (e.g., gasoline in unsaturated soils), recent studies have found that much of the related hydrocarbon removal is due to aerobic biodegradation, not simple volatilization. In many cases, more than 50 percent of the hydrocarbon removal by these systems is due to biodegradation. By emphasizing biodegradation and minimizing volatilization, the costs of system operation can be reduced, especially for off‐gas treatment. Maximizing biodegradation also supports more efficient site remediation because not only are the volatile hydrocarbons cleaned up, but the less volatile contaminants are also cleaned up—by biodegradation. More complete site cleanups are possible through bioventing, especially when cleanup criteria are related to total petroleum hydrocarbons. This article explores the major environmental conditions that influence biodegradation, analyzes several bioventing case histories, and calculates biodegradation's remedial costs.