z-logo
Premium
Status and trends in bioremediation treatment technology
Author(s) -
Fox Catherine A.
Publication year - 1991
Publication title -
remediation journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.762
H-Index - 27
eISSN - 1520-6831
pISSN - 1051-5658
DOI - 10.1002/rem.3440010305
Subject(s) - bioremediation , creosote , pentachlorophenol , environmental chemistry , trichloroethylene , pollutant , biodegradation , contamination , chemistry , environmental science , organic chemistry , ecology , biology
This article is a critical analysis of the treatment potential of bioremediation technology to degrade eight major environmental pollutants, polycyclic aromatic hydrocarbons, phenols, pentachlorophenols, creosote, polychlorinated biphenyls, trichloroethylene, chlorobenzoates, and chlorophenols. The discussion includes information on transformation mechanisms, identification of intermediate metabolites, elucidation of partial or complete pathways, effects of environmental parameters, as well as current and future industrial application. Results indicate that bioremediation used in conjunction with other physical and chemical treatment methodologies can effectively transform most prevalent nonchlorinated organic contaminants and some chlorinated contaminants, such as creosote and pentachlorophenol, into innocuous materials. Successful biodegradation of several other chlorinated organic compounds, notably polychlorinated biphenyls and trichloroethylene, is currently possible only under controlled laboratory conditions. Future successful field applications, however, appear promising.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here