z-logo
Premium
ERI evaluation of injectates used at a dry‐cleaning site
Author(s) -
Halihan Todd,
McDonald Stuart W.,
Patey Phil,
Stonecipher Marcy
Publication year - 2012
Publication title -
remediation journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.762
H-Index - 27
eISSN - 1520-6831
pISSN - 1051-5658
DOI - 10.1002/rem.21322
Subject(s) - vadose zone , contamination , environmental remediation , water table , groundwater , geology , electrically conductive , environmental science , environmental chemistry , hydrology (agriculture) , mineralogy , chemistry , materials science , geotechnical engineering , composite material , ecology , biology
A former dry‐cleaning site in Jackson, Tennessee, has undergone remediation to treat dense nonaqueous‐phase liquid (trichloroethene [TCE] and tetrachloroethene [PCE]) contamination in the subsurface. The dry cleaning operation closed in 1977. In 2002, a series of injections were made at the site consisting of corn syrup, vegetable oils, and Simple Green®. In 2004, approximately 200 cubic yards of contaminated soil were excavated, and the bottom of the excavation was covered with sodium lactate. In 2009, the site was characterized using proprietary electrical resistivity imaging (ERI; commercially available as Aestus GeoTrax Surveys TM ). Follow‐up confirmation soil borings targeted anomalies detected via the geophysical work. The results indicate an extremely electrically conductive (less than 1 ohm‐m) vadose zone downgradient from the injection wells, and extremely electrically resistive areas (greater than 10,000 ohm‐m) in the phreatic zone near the injection area. The sample data indicate that the electrically resistive anomalous zones contain moderate to high concentrations of undegraded dry‐cleaning compounds. Electrically conductive anomalous zones are interpreted to be areas of biological activity generated by the amendments injected into the subsurface based on the extreme conductivity values detected, the chemical composition (i.e., PCE degradates are present), and the dominant vadose‐zone location of the conductive zones. © 2012 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here