z-logo
Premium
Insufficient source area remediation results in the rebound of TCE breakdown products in groundwater
Author(s) -
Dickson James R.,
Stenson Rob
Publication year - 2011
Publication title -
remediation journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.762
H-Index - 27
eISSN - 1520-6831
pISSN - 1051-5658
DOI - 10.1002/rem.21301
Subject(s) - remedial action , environmental remediation , environmental science , groundwater , environmental engineering , waste management , savannah river site , plume , effluent , contamination , flushing , engineering , radioactive waste , ecology , physics , geotechnical engineering , thermodynamics , biology , medicine , endocrinology
In the early 1990s, a soil removal action was completed at a former disposal pit site located in southern Michigan. This action removed waste oil, cutting oil, and chlorinated solvents from the unsaturated zone. To contain groundwater contaminant migration at the site, a groundwater pump‐and‐treat system comprised of two extraction wells operating at a combined flow of 50 gallons per minute, carbon treatment, and a permitted effluent discharge was designed, installed, and operated for over 10 years. Groundwater monitoring for natural attenuation parameters and contaminant attenuation modeling demonstrated natural attenuation of the contaminant plume was adequate to attain site closure. As a result of incomplete contaminant source removal, a rebound of contaminants above the levels established in the remedial action plan (RAP) has occurred in the years following system shutdown and site closure. Groundwater concentrations have raised concerns regarding potential indoor air quality at adjacent residential properties constructed in the past 9 to 10 years. The only remedial option available in the original RAP is to resume groundwater pump‐and‐treat. To remediate the source area, an alternate remediation strategy using an ozone sparge system was developed. The ozone sparge remediation strategy addresses the residual saturated zone contaminants beneath the former disposal pit and reestablishes site closure requirements without resumption of the pump‐and‐treat system. A pilot study was completed successfully; and the final system design was subsequently approved by the Michigan Department of Environmental Quality. The system was installed and began operations in July 2010. As of the January 2011 monitoring event, the system has shown dramatic improvement in site contaminant concentrations. The system will continue to operate until monitoring results indicate that complete treatment has been obtained. The site will have achieved the RAP objectives when the system has been shut down and meets groundwater residential criteria for four consecutive quarters. © 2011 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here