z-logo
Premium
Assessing the potential of using phytoremediation for pyrene‐contaminated soils
Author(s) -
Chekol Tesema,
Vough Lester R.
Publication year - 2004
Publication title -
remediation journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.762
H-Index - 27
eISSN - 1520-6831
pISSN - 1051-5658
DOI - 10.1002/rem.20014
Subject(s) - rhizosphere , pyrene , phytoremediation , soil water , environmental chemistry , agronomy , soil contamination , chemistry , environmental science , biology , soil science , genetics , organic chemistry , bacteria
Forage crop species representing two biologically distinct families (legumes and grasses) were evaluated on soil spiked with 100 mg/kg of pyrene to determine the potential effectiveness of the rhizospheres of these plants for phytoremediation. In this experiment, pyrene dissipation could not be attributed to the presence of plants. Pyrene dissipation was also not related to rhizosphere biological activity, such as microbial counts and enzyme activity. Planting with reed canarygrass and switchgrass significantly increased the microbial counts in soil; however, the differences in the microbial counts were not correlated to the levels of pyrene dissipation. Reed canarygrass rhizosphere had significantly higher dehydrogenase activity compared to the switchgrass rhizosphere, but this difference in soil dehydrogenase activity was not related to pyrene dissipation. In general, the use of plants was not effective in causing pyrene transformation; however, the presence of vegetation on polycyclic aromatic hydrocarbon–contaminated soils could play a significant role in limiting the spread of contaminants (erosion, leaching) and enhancing ecosystem restoration. © 2004 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here