z-logo
open-access-imgOpen Access
Externally imposed electric field enhances plant root tip regeneration
Author(s) -
Kral Nicolas,
Hanna Ougolnikova Alexandra,
Sena Giovanni
Publication year - 2016
Publication title -
regeneration
Language(s) - English
Resource type - Journals
ISSN - 2052-4412
DOI - 10.1002/reg2.59
Subject(s) - regeneration (biology) , meristem , biology , microbiology and biotechnology , arabidopsis , arabidopsis thaliana , electric field , shoot , stimulation , auxin , botany , mutant , neuroscience , genetics , gene , physics , quantum mechanics
In plants, shoot and root regeneration can be induced in the distinctive conditions of tissue culture ( in vitro ) but is also observed in intact individuals ( in planta ) recovering from tissue damage. Roots, for example, can regenerate their fully excised meristems in planta , even in mutants with impaired apical stem cell niches. Unfortunately, to date a comprehensive understanding of regeneration in plants is still missing. Here, we provide evidence that an imposed electric field can perturb apical root regeneration in Arabidopsis . Crucially, we explored both spatial and temporal competences of the stump to respond to electrical stimulation, by varying respectively the position of the cut and the time interval between excision and stimulation. Our data indicate that a brief pulse of an electric field parallel to the root is sufficient to increase by up to two‐fold the probability of its regeneration, and to perturb the local distribution of the hormone auxin, as well as cell division regulation. Remarkably, the orientation of the root towards the anode or the cathode is shown to play a role.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here