Premium
Totally robotic single‐position ‘flip’ arm technique for splenic flexure mobilizations and low anterior resections
Author(s) -
Obias Vincent,
Sanchez Caroline,
Nam Arthur,
Montenegro Grace,
Makhoul Rami
Publication year - 2011
Publication title -
the international journal of medical robotics and computer assisted surgery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 53
eISSN - 1478-596X
pISSN - 1478-5951
DOI - 10.1002/rcs.375
Subject(s) - robotic arm , splenic flexure , medicine , dissection (medical) , pelvis , surgery , computer science , artificial intelligence , colorectal cancer , colonoscopy , cancer
Background Using the da Vinci robot in low anterior resection (LAR) has not been widely adopted due to limited range of motion of the robotic arms and the need to move the robot during operations. Our technique uses all three arms for both the splenic flexure and the pelvis, but with only one docking position. Methods The robot is placed to the left of the patient. The camera port is 3 cm to the right of the umbilicus. Arm 1 is placed in the RLQ. Arm 2 is placed midepigastric. Arm 3 is placed in the LLQ. Arm 3 starts off on the left side of the robot, on the same side as Arm 1 aimed cephalad. During mobilization of colon and splenic flexure, Arms 2 and 3 help retract the colon while Arm 1 dissects. Our pelvic dissection begins with Arm 3 “flipped” to the right side of the robot and redocked to the same left sided port aimed caudally. The robot does not need to be repositioned and the patient does not need to be moved. The pelvic dissection can now be done in the standard fashion. Results Our early experience includes four patients: two LARs and two left hemicolectomies. Mean operative time = 347 minutes, docking time = 20 minutes, and robotic surgical time = 195 minutes. Two complications occurred: post‐operative ileus and high ostomy output. Mean LOS = 5. Conclusions The robotic “flip” arm technique allows the surgeon to fully utilize all the robotic arms in LAR, which is unique versus other techniques. Copyright © 2011 John Wiley & Sons, Ltd.