Premium
Comparison of reaction forces on the anterior cruciate and anterolateral ligaments during internal rotation and anterior drawer forces at different flexion angles of the knee joint
Author(s) -
Uğur Levent
Publication year - 2017
Publication title -
the international journal of medical robotics and computer assisted surgery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 53
eISSN - 1478-596X
pISSN - 1478-5951
DOI - 10.1002/rcs.1815
Subject(s) - anterior cruciate ligament , anterolateral ligament , tibia , internal rotation , knee joint , biomechanics , anatomy , rotation (mathematics) , ligament , external rotation , orthodontics , medicine , reaction , cadaver , surgery , anterior cruciate ligament reconstruction , physics , geometry , mathematics , engineering , mechanical engineering , quantum mechanics
Background Having a complicated anatomy, the knee joint has been further detailed and a new formation defined, the anterolateral ligament (ALL), in recent studies. While the importance of this ligament, which previously was associated with Segond fractures, was explained via clinical, radiologic and biomechanical studies, and basically, is thought to be a fixator structures for the tibia against internal rotation stress. Although in recent studies efficient surgical treatment was applied to patients who underwent anterior cruciate ligament (ACL) operation, some patients having a positive pivot test highlights the clinical importance of the ALL. The aim of this study is to evaluate reaction forces of different flexion angles on the tibia during internal rotation and anterior drawer tests on both the ALL and ACL, and to examine theimportance of this ligament in knee biomechanics by a finite element analysis method. Method In this study, normal anatomy knee joint was modelled using Computed Tomography images from lower extremity length in DICOM format. 0°, 15°,30°,45°,60°,75° and 90° angles of flexion were applied, respectively, to these models and reaction force vectors formed on both ligaments were examined separately and as total vector and size by applying internal rotation and anterior drawer forces on each model. Non‐linear analysis was conducted using ANSYS (version 17) with the same limit conditions applied to all models. Results After all models were examined, in general when comparing reaction forces, those on the ACL were found to be higher. However, when vectoral directions were examined, forces on ALL increased with increased flexion ratio and internal rotation momentum. Beyond 30° flexion, the tensile force on the ALL is increased and compressive overload on the ACL occurs. Conclusion The ALL plays an important role in stability, especially against internal rotation forces, and an increased knee joint flexion ratio increases the stability contribution ratio. In particular, at 30° and higher angles, ACL reflects an antagonist effect and contributes to knee joint stability for rotational and mediolateral transposition.