z-logo
Premium
Identification of novel biomarkers of hepatocellular carcinoma by high‐definition mass spectrometry: Ultrahigh‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry and desorption electrospray ionization mass spectrometry imaging
Author(s) -
Nagai Koshi,
Uranbileg Baasanjav,
Chen Zhen,
Fujioka Amane,
Yamazaki Takahiro,
Matsumoto Yotaro,
Tsukamoto Hiroki,
Ikeda Hitoshi,
Yatomi Yutaka,
Chiba Hitoshi,
Hui ShuPing,
Nakazawa Toru,
Saito Ritsumi,
Koshiba Seizo,
Aoki Junken,
Saigusa Daisuke,
Tomioka Yoshihisa
Publication year - 2020
Publication title -
rapid communications in mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 136
eISSN - 1097-0231
pISSN - 0951-4198
DOI - 10.1002/rcm.8551
Subject(s) - chemistry , mass spectrometry , metabolomics , hepatocellular carcinoma , biomarker discovery , chromatography , biomarker , mass spectrometry imaging , desorption electrospray ionization , cancer research , proteomics , ionization , chemical ionization , biochemistry , medicine , ion , organic chemistry , gene
Rationale Hepatocellular carcinoma (HCC) is a highly malignant disease for which the development of prospective or prognostic biomarkers is urgently required. Although metabolomics is widely used for biomarker discovery, there are some bottlenecks regarding the comprehensiveness of detected features, reproducibility of methods, and identification of metabolites. In addition, information on localization of metabolites in tumor tissue is needed for functional analysis. Here, we developed a wide‐polarity global metabolomics (G‐Met) method, identified HCC biomarkers in human liver samples by high‐definition mass spectrometry (HDMS), and demonstrated localization in cryosections using desorption electrospray ionization MS imaging (DESI‐MSI) analysis. Methods Metabolic profiling of tumor ( n  = 38) and nontumor ( n  = 72) regions in human livers of HCC was performed by an ultrahigh‐performance liquid chromatography quadrupole time‐of‐flight MS (UHPLC/QTOFMS) instrument equipped with a mixed‐mode column. The HCC biomarker candidates were extracted by multivariate analyses and identified by matching values of the collision cross section and their fragment ions on the mass spectra obtained by HDMS. Cryosections of HCC livers, which included both tumor and nontumor regions, were analyzed by DESI‐MSI. Results From the multivariate analysis, m / z 904.83 and m / z 874.79 were significantly high and low, respectively, in tumor samples and were identified as triglyceride (TG) 16:0/18:1(9 Z )/20:1(11 Z ) and TG 16:0/18:1(9 Z )/18:2(9 Z ,12 Z ) using the synthetic compounds. The TGs were clearly localized in the tumor or nontumor areas of the cryosection. Conclusions Novel biomarkers for HCC were identified by a comprehensive and reproducible G‐Met method with HDMS using a mixed‐mode column. The combination analysis of UHPLC/QTOFMS and DESI‐MSI revealed that the different molecular species of TGs were associated with tumor distribution and were useful for characterizing the progression of tumor cells and discovering prospective biomarkers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here