z-logo
Premium
Analysis of non‐derivatised bacteriohopanepolyols by ultrahigh‐performance liquid chromatography/tandem mass spectrometry
Author(s) -
Talbot Helen M.,
Sidgwick Frances R.,
Bischoff Juliane,
Osborne Kate A.,
Rush Darci,
Sherry Angela,
SpencerJones Charlotte L.
Publication year - 2016
Publication title -
rapid communications in mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 136
eISSN - 1097-0231
pISSN - 0951-4198
DOI - 10.1002/rcm.7696
Subject(s) - chemistry , chromatography , atmospheric pressure chemical ionization , mass spectrometry , selected reaction monitoring , liquid chromatography–mass spectrometry , formic acid , high performance liquid chromatography , triple quadrupole mass spectrometer , tandem mass spectrometry , chemical ionization , analytical chemistry (journal) , ionization , ion , organic chemistry
Rationale Traditional investigation of bacteriohopanepolyols (BHPs) has relied on derivatisation by acetylation prior to gas chromatography/mass spectrometry (GC/MS) or liquid chromatography/MS (LC/MS) analysis. Here, modern chromatographic techniques (ultrahigh‐performance liquid chromatography (UPLC)) and new column chemistries were tested to develop a method for BHP analysis without the need for derivatisation. Methods Bacterial culture and sedimentary lipid extracts were analysed using a Waters Acquity Xevo TQ‐S triple quadrupole mass spectrometer in positive ion atmospheric pressure chemical ionisation (APCI) mode. Waters BEH C18 and ACE Excel C18 were the central columns evaluated using a binary solvent gradient with 0.1% formic acid in the polar solvent phase in order to optimise performance and selectivity. Results Non‐amine BHPs and adenosylhopane showed similar performance on each C18 column; however, BHP‐containing terminal amines were only identified eluting from the ultra‐inert ACE Excel C18 column. APCI‐MS/MS product ion scans revealed significant differences in fragmentation pathways from previous methods for acetylated compounds. The product ions used for targeted multiple reaction monitoring (MRM) are summarised. Conclusions UPLC/MS/MS analysis using an ACE Excel C18 column produced superior separation for amine‐containing BHPs and reduced run times from 60 to 9 min compared with previous methods. Unexpected variations in fragmentation pathways between structural subgroups must be taken into account when optimising MRM transitions for future quantitative studies. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom