Premium
High‐throughput quantification of stabilizers in polymeric materials by flow injection tandem mass spectrometry
Author(s) -
Beißmann Susanne,
Reisinger Michael,
Reimann Andreas,
Klampfl Christian W.,
Buchberger Wolfgang
Publication year - 2014
Publication title -
rapid communications in mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 136
eISSN - 1097-0231
pISSN - 0951-4198
DOI - 10.1002/rcm.6864
Subject(s) - chemistry , mass spectrometry , analyte , chromatography , atmospheric pressure chemical ionization , polymer , stabilizer (aeronautics) , matrix (chemical analysis) , analytical chemistry (journal) , tandem mass spectrometry , ionization , sample preparation , chemical ionization , organic chemistry , ion , mechanical engineering , engineering
RATIONALE High‐throughput methods for identification and quantification of stabilizers in plastic materials are of significant importance in order to evaluate the suitability of materials of unknown origin for specific application areas, to clarify reasons for failure of materials, or for comparison of materials from different sources. METHODS In the present study, a highly sensitive and rapid flow injection method coupled to selected reaction monitoring mass spectrometry (MS) for comprehensive analysis of 21 polymer stabilizers in polyolefins is demonstrated. A critical factor for this approach is the choice of ionization mode, as no separation was performed prior to MS detection. Differences between several ionization techniques regarding matrix effects are reported. RESULTS Atmospheric pressure chemical ionization was found to be the most suitable ionization technique, with no significant matrix effects observed. The developed method has a linear dynamic range over two to three orders of magnitude with correlation coefficients better than 0.99 for all studied analytes. Following a multistep sample preparation protocol, the method allowed quantification down to minimum values of between 0.0001 and 0.04 wt% depending on the type of stabilizer. Results were compared to an established chromatographic approach and showed very good correlation (bias below 7.5%). CONCLUSIONS The applicability of the optimized method could be demonstrated for both the qualitative and quantitative determination of polymer stabilizers in polyolefins. Furthermore, the described approach yields a complete analysis in a much shorter time than can be achieved with commonly applied chromatographic methods. Copyright © 2014 John Wiley & Sons, Ltd.