Premium
Surface‐assisted laser desorption/ionization mass spectrometry with a rotating ball interface
Author(s) -
Alimpiev Sergey,
Grechnikov Alexander,
Sunner Jan,
Karavanskii Vladimir,
Simanovsky Yaroslav,
Nikiforov Sergey
Publication year - 2010
Publication title -
rapid communications in mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 136
eISSN - 1097-0231
pISSN - 0951-4198
DOI - 10.1002/rcm.4836
Subject(s) - chemistry , analytical chemistry (journal) , mass spectrometry , matrix assisted laser desorption electrospray ionization , laser , silicon , ambient ionization , desorption , atmospheric pressure , desorption electrospray ionization , ionization , ion , chromatography , chemical ionization , optics , electron ionization , adsorption , physics , oceanography , organic chemistry , geology
A rotating ball interface for surface‐assisted laser desorption/ionization (SALDI) mass spectrometry was designed and tested. One side of the ball was exposed to atmospheric pressure and the other to the vacuum in a time‐of‐flight mass spectrometer. Analytes (arginine, atenolol, reserpine, tofisopam, and chloropyramine) were applied using electrospray to a silicon substrate on the atmospheric side, the ball was rotated 180°, and the analyte was desorbed on the vacuum side using a pulsed, 200 Hz, 355 nm laser. In order to increase the desorption area, the laser focus was scanned over the substrate in a raster pattern repeated once every second. The design allows for rapid sample throughout with a sample turn‐around time as short as 5 s. Newly produced porous silicon substrates initially yielded very low ion signals, and they required several hundred laser shots to attain maximum sensitivity. In contrast, amorphous silicon did not require such ‘activation’. Quantitative analysis showed a sample‐to‐sample reproducibility of about 10%. The sensitivities with model analytes were in the 1000 to 10 000 ions/fmole range and detection limits in the low fg range. Copyright © 2010 John Wiley & Sons, Ltd.