Premium
Uncertainty evaluation in the analysis of biological samples by sector field inductively coupled plasma mass spectrometry. Part A: measurements of Be, Cd, Hg, Ir, Pb, Pd, Pt, Rh, Sb, U, Tl and W in human serum
Author(s) -
Bocca Beatrice,
Mattei Daniela,
Pino Anna,
Alimonti Alessandro
Publication year - 2010
Publication title -
rapid communications in mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 136
eISSN - 1097-0231
pISSN - 0951-4198
DOI - 10.1002/rcm.4650
Subject(s) - repeatability , chemistry , reproducibility , inductively coupled plasma mass spectrometry , analytical chemistry (journal) , chromatography , mass spectrometry , measurement uncertainty , calibration , standard deviation , relative standard deviation , dilution , accuracy and precision , detection limit , statistics , mathematics , physics , thermodynamics
A protocol that utilises data (trueness/recovery, precision and robustness) from validation tests to calculate measurement uncertainty was described and applied to a sector field inductively coupled plasma mass spectrometry (SF‐ICP‐MS)‐based method for the determination of Be, Cd, Hg, Ir, Pb, Pd, Pt, Rh, Sb, U, Tl and W in human serum. The method was validated according to criteria issued by international bodies such as AOAC, Eurachem and ISO and the uncertainty in the analytical measurements was estimated following the Eurachem/Citac guide. The methodology was based on dilution of human serum with water and analysis by serum‐matched standard calibration. The method quantification limits ranged 0.02 µg/L (Tl, Ir) to 0.26 µg/L (Hg). The coefficients of regression were greater than 0.9991 over a range of two orders of magnitude of concentration. The mean trueness was 101% and the mean recovery on three levels of fortification (1‐, 1.5‐, and 2‐times the baseline serum level) ranged between 93.3% and 106%. The maximum relative standard deviation values for repeatability and within‐laboratory reproducibility were 12.8% and 13.5%. The method was robust to slight variations of some critical factors relevant to the sample preparation and SF‐ICP‐MS instrumentation. The relative expanded uncertainty over three levels of concentration ranged from 11.6% (Hg) to 27.6% (Pt), and the uncertainty on the within‐laboratory reproducibility, which included factors such as time, analyst and calibration, represented the main contribution to the overall uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.