z-logo
Premium
Matrix‐free laser desorption/ionization mass spectrometry using silicon glancing angle deposition (GLAD) films
Author(s) -
Jemere Abebaw B.,
Bezuidenhout Louis W.,
Brett Michael J.,
Harrison D. Jed
Publication year - 2010
Publication title -
rapid communications in mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 136
eISSN - 1097-0231
pISSN - 0951-4198
DOI - 10.1002/rcm.4634
Subject(s) - chemistry , mass spectrometry , analytical chemistry (journal) , reproducibility , mass spectrum , silicon , desorption , porous silicon , ionization , ambient ionization , detection limit , matrix (chemical analysis) , chromatography , chemical ionization , ion , organic chemistry , adsorption
Glancing angle deposition (GLAD) was used to fabricate nanostructured silicon (Si) thin films with highly controlled morphology for use in laser desorption/ionization mass spectrometry (DIOS‐MS). Peptides, drugs and metabolites in the mass range of 150–2500 Da were readily analyzed. The best performance was obtained with 500 nm thick films deposited at a deposition angle of 85°. Low background mass spectra and attomole detection limits were observed with DIOS‐MS for various peptides. Films used after three months of dry storage in ambient conditions produced mass spectra with negligible low‐mass noise following a 15 min UV‐ozone treatment. The performance of the Si GLAD films was as good as or better than that reported for electrochemically etched porous silicon and related materials, and was superior to matrix‐assisted laser desorption/ionization (MALDI)‐MS for analysis of mixtures of small molecules between 150–2500 Da in terms of background chemical noise, detection limits and spot‐to‐spot reproducibility. The spot‐to‐spot reproducibility of signal intensities (100 shots/spectrum) from 21 different Si GLAD film targets was ±13% relative standard deviation (RSD). The single shot‐to‐shot reproducibility of signals on a single target was ±19% RSD (n = 7), with no indication of sweet spots or mute spots. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here