Premium
The coupling of direct analysis in real time ionization to Fourier transform ion cyclotron resonance mass spectrometry for ultrahigh‐resolution mass analysis
Author(s) -
Rummel Julia L.,
McKenna Amy M.,
Marshall Alan G.,
Eyler John R.,
Powell David H.
Publication year - 2010
Publication title -
rapid communications in mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 136
eISSN - 1097-0231
pISSN - 0951-4198
DOI - 10.1002/rcm.4450
Subject(s) - dart ion source , chemistry , fourier transform ion cyclotron resonance , mass spectrometry , dart , analytical chemistry (journal) , mass spectrum , time of flight mass spectrometry , ion source , ionization , ambient ionization , hybrid mass spectrometer , ion cyclotron resonance , ion mobility spectrometry , analyte , ion , electron ionization , selected reaction monitoring , chromatography , tandem mass spectrometry , cyclotron , organic chemistry , computer science , programming language
Direct Analysis in Real Time (DART) is an ambient ionization technique for mass spectrometry that provides rapid and sensitive analyses with little or no sample preparation. DART has been reported primarily for mass analyzers of low to moderate resolving power such as quadrupole ion traps and time‐of‐flight (TOF) mass spectrometers. In the current work, a custom‐built DART source has been successfully coupled to two different Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometers for the first time. Comparison of spectra of the isobaric compounds, diisopropyl methylphosphonate and theophylline, acquired by 4.7 T FT‐ICR MS and TOF MS, demonstrates that the TOF resolving power can be insufficient for compositionally complex samples. 9.4 T FT‐ICR MS yielded the highest mass resolving power yet reported with DART ionization for 1,2‐benzanthracene and 9,10‐diphenylanthracene. Polycyclic aromatic hydrocarbons exhibit a spatial dependence in ionization mechanisms between the DART source and the mass spectrometer. The feasibility of analyzing a variety of samples was established with the introduction and analysis of food products and crude oil samples. DART FT‐ICR MS provides complex sample analysis that is rapid, highly selective and information‐rich, but limited to relatively low‐mass analytes. Copyright © 2010 John Wiley & Sons, Ltd.