z-logo
Premium
Rapid and nondestructive analysis of phthalic acid esters in toys made of poly(vinyl chloride) by direct analysis in real time single‐quadrupole mass spectrometry
Author(s) -
Rothenbacher Thorsten,
Schwack Wolfgang
Publication year - 2009
Publication title -
rapid communications in mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 136
eISSN - 1097-0231
pISSN - 0951-4198
DOI - 10.1002/rcm.4194
Subject(s) - dart ion source , phthalate , chemistry , dibutyl phthalate , phthalic acid , plasticizer , mass spectrometry , vinyl chloride , detection limit , chromatography , polyvinyl chloride , dimethyl phthalate , diethyl phthalate , organic chemistry , analytical chemistry (journal) , ion , electron ionization , polymer , ionization , copolymer
In the European Community, selected phthalic acid esters (PAE) are restricted in their use for the manufacture of toys and childcare articles to a content of 0.1% by weight. As PAE are mainly used as plasticisers for poly(vinyl chloride) (PVC), a rapid screening method for PVC samples with direct analysis in real time ionisation and single‐quadrupole mass spectrometry (DART‐MS) was developed. Using the ions for the protonated molecules, a limit of detection (LOD) of 0.05% was obtained for benzyl butyl phthalate, bis(2‐ethylhexyl) phthalate and diisononyl phthalate, while for dibutyl phthalate, di‐ n ‐octyl phthalate and diisodecyl phthalate the LOD was 0.1%. Validation of identification by the presence of ammonium adducts and characteristic fragment ions was possible to a content of ≥1% for all PAE, except for benzyl butyl phthalate (≥5%). Based on the fragment ions, bis(2‐ethylhexyl) phthalate could clearly be distinguished from di‐ n ‐octyl phthalate, if the concentrations were ≥5% and ≥1% at measured DART helium temperatures of 130 and 310°C, respectively. The complete analysis of one sample only took about 8 min. At the generally used gas temperature of 130°C, most toy and childcare samples did not sustain damage if their shape fitted into the DART source. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom