z-logo
Premium
Cysteine‐capped ZnSe quantum dots as affinity and accelerating probes for microwave enzymatic digestion of proteins via direct matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometric analysis
Author(s) -
Shastri Lokesh A.,
Kailasa Suresh Kumar,
Wu HuiFen
Publication year - 2009
Publication title -
rapid communications in mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 136
eISSN - 1097-0231
pISSN - 0951-4198
DOI - 10.1002/rcm.4137
Subject(s) - chemistry , mass spectrometry , matrix assisted laser desorption/ionization , chromatography , lysozyme , desorption , matrix (chemical analysis) , combinatorial chemistry , analytical chemistry (journal) , biochemistry , organic chemistry , adsorption
Fluorescent semiconductor quantum dots (QDs) exhibit great potential and capability for many biological and biochemical applications. We report a simple strategy for the synthesis of aqueous stable ZnSe QDs by using cysteine as the capping agent (ZnSe‐Cys QDs). The ZnSe QDs can act as affinity probes to enrich peptides and proteins via direct matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOFMS) analysis. This nanoprobe could significantly enhance protein signals (insulin, ubiquitin, cytochrome c, myoglobin and lysozyme) in MALDI‐TOFMS by 2.5–12 times compared with the traditional method. Additionally, the ZnSe‐Cys QDs can be applied as heat absorbers (as accelerating probes) to speed up microwave‐assisted enzymatic digestion reactions and also as affinity probes to enrich lysozyme‐digested products in MALDI‐TOFMS. Furthermore, after the enrichment experiments, the solutions of ZnSe‐Cys QDs mixed with proteins can be directly deposited onto the MALDI plates for rapid analysis. This approach shows a simple, rapid, efficient and straightforward method for direct analysis of proteins or peptides by MALDI‐TOFMS without the requirement for further time‐consuming separation processes, tedious washing steps or laborious purification procedures. The present study has demonstrated that ZnSe‐Cys QDs are reliable and potential materials for rapid, selective separation and enrichment of proteins as well as accelerating probes for microwave‐digested reactions for proteins than the regular MALDI‐MS tools. Additionally, we also believe that this work may also inspire investigations for applications of QDs in the field of MALDI‐MS for proteomics. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here