z-logo
Premium
Improving peptide identification using an empirical peptide retention time database
Author(s) -
Sun Wei,
Zhang Ling,
Yang Ruifeng,
Shao Chen,
Zhang Zhengguo,
Gao Youhe
Publication year - 2009
Publication title -
rapid communications in mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 136
eISSN - 1097-0231
pISSN - 0951-4198
DOI - 10.1002/rcm.3851
Subject(s) - chemistry , peptide , proteome , tandem mass spectrometry , chromatography , mass spectrometry , retention time , proteomics , liquid chromatography–mass spectrometry , identification (biology) , false discovery rate , database search engine , biochemistry , search engine , computer science , information retrieval , botany , biology , gene
Peptide retention time (RT) is independent of tandem mass spectrometry (MS/MS) parameters and can be combined with MS/MS information to enhance peptide identification. In this paper, we utilized peptide empirical RT and MS/MS for peptide identification. This new approach resulted in the construction of an Empirical Peptide Retention Time Database (EPRTD) based on peptides showing a false‐positive rate (FPR) ≤1%, detected in several liquid chromatography (LC)/MS/MS analyses. In subsequent experiments, the RT of peptides with FPR >1% was compared with empirical data derived from the EPRTD. If the experimental RT was within a specified time range of the empirical value, the corresponding MS/MS spectra were accepted as positive. Application of the EPRTD approach to simple samples (known protein mixtures) and complex samples (human urinary proteome) revealed that this method could significantly enhance peptide identification without compromising the associated confidence levels. Further analysis indicated that the EPRTD approach could improve low‐abundance peptides and with the expansion of the EPRTD the number of peptide identifications will be increased. This approach is suitable for large‐scale clinical proteomics research, in which tens of LC/MS/MS analyses are run for different samples with similar components. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here