Premium
Closed formulas for one‐ and two‐center harmonic oscillator integrals
Author(s) -
Palma A.,
Sandoval L.,
Morales J.
Publication year - 1987
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560320771
Subject(s) - center (category theory) , harmonic oscillator , mathematics , cauchy's integral formula , cauchy distribution , operator (biology) , hausdorff space , mathematical analysis , matrix (chemical analysis) , basis (linear algebra) , harmonic function , quantum harmonic oscillator , pure mathematics , physics , quantum mechanics , geometry , cauchy problem , initial value problem , biochemistry , chemistry , materials science , repressor , gene , transcription factor , composite material , crystallography
Closed formulas for one‐ and two‐center matrix elements are derived for an analytical arbitrary operator function in the harmonic oscillator basis. The method is based on the Baker–Campbell–Hausdorff ( BCH ) theorem and Cauchy's integral formula. A table is displayed showing some examples for the two‐center case. A pertinent relationship with other works is discussed.