z-logo
Premium
Geometrical energy derivative evaluation with MRCI wave functions
Author(s) -
Shepard Ron
Publication year - 1987
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560310105
Subject(s) - wave function , second derivative , potential energy , basis (linear algebra) , matrix (chemical analysis) , energy (signal processing) , computational chemistry , multireference configuration interaction , mathematics , chemistry , mathematical analysis , physics , quantum mechanics , geometry , basis set , density functional theory , chromatography
The theory of MCSCF and CI energy derivatives with respect to geometrical variations is briefly reviewed with special attention given to the MCSCF and MRCI energy gradients. A computational procedure is proposed for MRCI energy gradients that does not require the solution to any “coupled‐perturbed MCSCF ” equations, it does not require any expensive direct‐ CI matrix‐vector products involving derivative integrals, and it does not require any derivative integrals to be transformed from the AO basis to the MO basis. An additional feature is that it does not require any changes to existing MCSCF gradient evaluation programs in order to compute MRCI gradients. The only difference in the two cases is the exact nature of the data passed to the gradient evaluation program from the previous steps in the computational procedure. The additional effort required to compute the entire MRCI energy gradient vector is approximately that required for one additional iteration of the MRCI diagonalization procedure and for one additional MCSCF iteration. For large scale MRCI wave functions, the MRCI energy gradient evaluation should only require about 10% of the effort of computing the wave function itself. This computational procedure removes a major computational botleneck of potential energy surface evaluation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here