Premium
Discussion of several analytical approximate expressions for the eigenvalues of the bounded harmonic oscillator and hydrogen atom
Author(s) -
Arteca Gustavo A.,
Maluendes Sergio A.,
Fernández Francisco M.,
Castro Eduardo A.
Publication year - 1983
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560240205
Subject(s) - eigenvalues and eigenvectors , bounded function , isotropy , harmonic oscillator , hydrogen atom , mathematics , atom (system on chip) , order (exchange) , mathematical analysis , harmonic , quantum mechanics , physics , computer science , group (periodic table) , finance , economics , embedded system
Abstract Several approximate analytical formulas for the multidimensional isotropic bounded oscillators and the bounded hydrogen atom are compared. Numerical results show that the coth z method is in both cases better than the Padé approximants method. Perturbational polynomials, necessary in order to build the approximate eigenvalues, are obtained through the hypervirial perturbative method.