z-logo
Premium
New method for the direct calculation of electron density in many‐electron systems. I. Application to closed‐shell atoms
Author(s) -
Deb B. M.,
Ghosh S. K.
Publication year - 1983
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560230104
Subject(s) - electron , kinetic energy , physics , atomic physics , thomas–fermi model , energy (signal processing) , electron density , ground state , simple (philosophy) , quantum mechanics , philosophy , epistemology
A new density‐functional equation is suggested for the direct calculation of electron density ρ( r ) in many‐electron systems. This employs a kinetic energy functional T 2 + f ( r ) T 0 , where T 2 is the original Weizsäcker correction, T 0 is the Thomas–Fermi term, and f ( r ) is a correction factor that depends on both r and the number of electrons N . Using the Hartree–Fock relation between the kinetic and the exchange energy density, and a nonlocal approximation to the latter, the kinetic energy–density functional is written (in a.u.)\documentclass{article}\pagestyle{empty}\begin{document}$$ t[\rho] = {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 4}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$4$}}\nabla ^2 \rho + {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 8}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$8$}}(\nabla \rho \cdot \nabla \rho)/\rho + C_k f({\bf r})\rho ^{5/3}, $$\end{document} where \documentclass{article}\pagestyle{empty}\begin{document}$ C_k = {\raise0.7ex\hbox{$2$} \!\mathord{\left/ {\vphantom {2 {10}}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{${10}$}}(3\pi ^2)^{2/3} $\end{document} . Incorporating the above expression in the total energy density functional and minimizing the latter subject to N representability conditions for ρ( r ) result in an Euler–Lagrange nonlinear second‐order differential equation\documentclass{article}\pagestyle{empty}\begin{document}$$ \left[{ - {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}\nabla ^2 + v_{{\rm nuc}} ({\bf r}) + v_{{\rm cou}} ({\bf r}) + v_{XC} ({\bf r}) + {\raise0.7ex\hbox{$5$} \!\mathord{\left/ {\vphantom {5 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}C_k g({\bf r})\rho ^{2/3}} \right]\phi ({\bf r}) = \mu \phi ({\bf r}) $$\end{document} where μ is the chemical potential, we have ρ( r ) = |ϕ( r )| 2 , and g ( r ) is related to f ( r ). Numerical solutions of the above equation for Ne, Ar, Kr, and Xe, by modeling f ( r ) and g ( r ) as simple sums over Gaussians, show excellent agreement with the corresponding Hartree–Fock ground‐state densities and energies, indicating that this is likely to be a promising method for calculating fairly accurate electron densities in atoms and molecules.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom