Premium
Uniform quality gaussian basis sets for molecular calculations. V. Property optimization: A study on H 2 O
Author(s) -
Daudel Raymond,
Poirier Raymond A.,
Csizmadia Imre G.
Publication year - 1982
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560210404
Subject(s) - weighting , property (philosophy) , dimensionless quantity , gaussian , energy minimization , observable , minification , energy (signal processing) , basis (linear algebra) , mathematical optimization , statistical physics , optimization problem , quality (philosophy) , computational chemistry , mathematics , computer science , physics , chemistry , thermodynamics , quantum mechanics , geometry , philosophy , epistemology , acoustics
Energy optimization (Eo) and property optimization (PO) were performed on the H 2 O molecule. A definition of the “optimality” κ, a dimensionless quantity of the form\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm optimality} \equiv \kappa = \left({\sum\limits_i {\left[{\omega _i \left\langle {\hat o} \right\rangle _i - O_i } \right]^2 } } \right) $$\end{document}has been proposed where ω i is a weighting factor, 〈ǒ〉 i is the computed observable, and O i is the corresponding property measured experimentally. The minimization of κ leads to property optimization methods (POM) which is a useful alternative to energy optimization methods (EOM).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom