Premium
Numerical estimates of the convergence of the Rayleigh‐Schrödinger perturbation expansions for the energy levels of various models of the benzene molecule
Author(s) -
Pellegatti Alain,
Čížek Jiří,
Paldus Josef
Publication year - 1982
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560210111
Subject(s) - hamiltonian (control theory) , perturbation (astronomy) , benzene , molecule , physics , rayleigh scattering , schrödinger equation , mathematical physics , quantum mechanics , mathematics , mathematical analysis , computational chemistry , chemistry , mathematical optimization , organic chemistry
We estimate radii of convergence of the Rayleigh‐Schrödinger perturbation expansions for various energy levels of the π‐electron model of the benzene molecule, described by the Hubbard Hamiltonian in both weakly and strongly correlated limits. They are determined using a “generalized” Cauchy criterion applied to the numerically determined coefficients of the pertinent expansions.