Premium
Regularity and asymptotic properties of the discrete spectrum of electronic hamiltonians
Author(s) -
Combes J. M.,
Seiler R.
Publication year - 1978
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560140209
Subject(s) - eigenvalues and eigenvectors , diatomic molecule , differentiable function , spectrum (functional analysis) , discrete spectrum , projection (relational algebra) , function (biology) , order (exchange) , electronic structure , physics , quantum mechanics , mathematics , mathematical analysis , molecule , algorithm , finance , evolutionary biology , economics , biology
We analyze the electronic part of diatomic molecular Hamiltonians as a function of the internuclear distance, x . We prove analyticity outside x ≠ 0 of eigenvalues in the discrete spectrum and differentiability up to second order for the associated projection operators. Furthermore, it is shown that for large internuclear distances they converge to eigenvalues and eignprojectors of the separated atoms.