Premium
Bond functions in CEPA‐PNO computations of electronic structure. Basis set optimization studies in N 2 H 2 . Application to ozone and the stability of the bound cyclic conformer of O 3
Author(s) -
Burton Peter G.
Publication year - 2009
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560120825
Subject(s) - basis (linear algebra) , basis set , basis function , gaussian , computation , chemistry , conformational isomerism , computational chemistry , bond length , yield (engineering) , wave function , function (biology) , atomic physics , physics , molecule , mathematics , algorithm , thermodynamics , geometry , quantum mechanics , density functional theory , organic chemistry , evolutionary biology , biology
Extensive optimization of s and p Gaussian bond functions used to augment (9 s , 5 p |5 s ) → [5 s , 3 p | 3 s | atomic basis in N 2 H 2 at the SCF and CEPA‐PNO level leads to simple rules for the use of bond functions to efficiently replace nuclear‐centered higher angular momentum function basis augmentation. (9 s , 5 p ) → [5 s 2 p ] + s, p bond function basis computations featuring SCF bond function optimization and geometry optimization at the CEPA‐PNO level yield significantly better wave functions for bent and cyclic ozone than previous studies and reveal the great stability of the bound cyclic conformer of O 3 .