z-logo
Premium
A new integral transform basis function
Author(s) -
Bishop David M.,
Schneider Barbara E.
Publication year - 1975
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560090108
Subject(s) - integral transform , function (biology) , mathematics , mathematical analysis , basis (linear algebra) , basis function , geometry , evolutionary biology , biology
A new integral transform function:\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm exp }\left({{\rm - }\zeta {\rm r}} \right)\int_0^\infty {s(n)r^n dn} $$\end{document} where s ( n ) is a positive definite shape function, is proposed and investigated. A test on H   2 +shows that it does not suffer from the inadequacies of earlier integral transform functions, of the form:\documentclass{article}\pagestyle{empty}\begin{document}$$ r^n \int_0^\infty {c(\zeta ){\rm exp}({{-}\xi r})d\zeta } $$\end{document} where c (ζ) is a positive definite shape function.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here