z-logo
Premium
A new integral transform basis function
Author(s) -
Bishop David M.,
Schneider Barbara E.
Publication year - 1975
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560090108
Subject(s) - integral transform , function (biology) , mathematics , mathematical analysis , basis (linear algebra) , basis function , geometry , evolutionary biology , biology
A new integral transform function:\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm exp }\left({{\rm - }\zeta {\rm r}} \right)\int_0^\infty {s(n)r^n dn} $$\end{document} where s ( n ) is a positive definite shape function, is proposed and investigated. A test on H   2 +shows that it does not suffer from the inadequacies of earlier integral transform functions, of the form:\documentclass{article}\pagestyle{empty}\begin{document}$$ r^n \int_0^\infty {c(\zeta ){\rm exp}({{-}\xi r})d\zeta } $$\end{document} where c (ζ) is a positive definite shape function.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom