z-logo
Premium
Hammerstein integral equivalent of Riccati's equation
Author(s) -
Pulfer J. D.,
Whitehead M. A.
Publication year - 1974
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560080504
Subject(s) - mathematics , simple (philosophy) , riccati equation , kernel (algebra) , algebraic riccati equation , integral equation , gravitational singularity , nonlinear system , transformation (genetics) , type (biology) , mathematical analysis , algebraic equation , algebraic number , summation equation , partial differential equation , pure mathematics , physics , quantum mechanics , ecology , philosophy , biochemistry , chemistry , epistemology , biology , gene
A transformation exists which allows the general Riccati equation\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$$ \begin{array}{*{20}c}{{dy\left( r \right)} \mathord{\left/ {\vphantom {{dy\left( r \right)} {dr = A\left( r \right) + }}} \right. \kern-\nulldelimiterspace} {dr = A\left( r \right) + }}B\left( r \right)y\left( r \right) + C\left( r \right)y\left( r \right)^2 \hfill & 0\leqq r < b \end{array}$$\end{document} to be written in a simpler form:\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$$ d\beta (r)/dr\, = \,P(r)\, + \,R(r)\beta (r)^2 \quad 0\buildrel{<}\over{=} r < b $$\end{document} The transformed equation has the equivalent nonlinear Hammerstein integral equation\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$$ \begin{array}{*{20}c}\beta (r) = K\int_{r^{\prime} = 0}^b P(r^{\prime}) N(r, r^{\prime})dr^{\prime} \quad 0\buildrel{<}\over{=} r < b \end{array}$$\end{document} if the kernel N (r, r′) satisfies three conditions:\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$$ \begin{array}{*{20}c} {({\rm i})} & {\{ d/dr - R(r)\beta (r)\} N(r,r)} \\ \end{array}\, = \,\delta (r,r)/K $$\end{document} and\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$$ \begin{array}{*{20}c} {({\rm ii})} & {\{ d/dr'\, + \,R(r')\beta (r')\} N(r,r')} \\ \end{array}\, = \, - \delta (r,r')/K $$\end{document} and\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$$ \begin{array}{*{20}c} {({\rm iii})} & {{\rm [}\beta (r')N(r,r'){\rm ]}_{r' = 0}^b } \\ \end{array} = 0 $$\end{document}A solution of the nonlinear integral equation is devised by repeatedly integrating the Hammerstein equation. During this procedure the kernel generates an equation that contains only coefficients of β( r ) 0 and β( r ) 1 . As a result, after truncating at the end of the n th cycle, it is a simple matter to write down a Padé‐type approximation: all coefficients in this approximation are capable of being evaluated in terms of simple algebraic formulations of P ( r ), R ( r ), and integrals over P ( r ). The zeroes of the denominator of the Padé‐type approximation define the points where singularities occur in β( r ).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom