z-logo
Premium
An expansion for four‐center integrals over Slater‐type orbitals
Author(s) -
Salmons Lydia S.,
Ruedenberg Klaus
Publication year - 1972
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.560060214
Subject(s) - laguerre polynomials , atomic orbital , spherical harmonics , center (category theory) , type (biology) , slater integrals , character (mathematics) , point (geometry) , mathematical physics , physics , electron , expression (computer science) , mathematics , mathematical analysis , quantum mechanics , chemistry , geometry , crystallography , ecology , computer science , programming language , biology
A new expression is given for the electron repulsion integral over Slater‐type orbitals on four different centers. It is based on the asymptotic expansion derived from the bipolar expansion of a previous paper. The expression has the form\documentclass{article}\pagestyle{empty}\begin{document}$$ I\,\mathop \sim \,\sum \limits_{q_1 }^\infty \mathop \sum \limits_{q_2 }^\infty \,F_{q_1 q_2 } (R_{{\rm PQ}})\sigma _{q_1 } (A,\,B)\sigma _{q_2 } (C,\,D) $$\end{document} where q p = { n p , l p , m p }. Both F and σ are closed expressions. The quantity F is a combination of incomplete gamma functions, Laguerre polynomials and spherical harmonics. It depends upon the relative coordinates of a point P on the AB axis and a point Q on the CD axis. The functions σ nlm ( A , B ) depend on the charge distribution (χ A χ B ); they have the character of overlap integrals and are of the form\documentclass{article}\pagestyle{empty}\begin{document}$$ \sigma _{nlm} (A,\,B)\, = \,\mathop \Sigma \limits_v \,\mathop \Sigma \limits_w \,F_{vw} (\zeta _A R_{AB},\,\zeta _B R_{AB})K_{vw} (R_{AB}) $$\end{document}

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom