Premium
H 2 promoting effect in Cr/ PNP ‐catalyzed ethylene tetramerization: A density functional theory study
Author(s) -
Yin Fangqian,
Zhu Tingchun,
Dong Chunhua,
Li Bin,
Zhang Le
Publication year - 2021
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.26667
Subject(s) - ethylene , catalysis , chemistry , density functional theory , hydrogen , catalytic cycle , ligand (biochemistry) , photochemistry , computational chemistry , organic chemistry , biochemistry , receptor
It is well known that hydrogen promotes catalyst activity in Cr/PNP‐catalyzed ethylene tetramerization, but the mechanism of this effect is unclear. A density functional theory (DFT) study was conducted to explore this effect, and conformation changes were carefully taken into consideration to build a clear reaction pathway. Three components in the ethylene tetramerization catalytic cycle were examined in detail: the production of 1‐hexene from metallacycloheptane, the production of 1‐octene from metallacyclononane, and the formation of an active centre on the Cr/PNP catalyst. This result indicates that the formation of an active centre on the catalyst becomes more favorable upon the imposition of hydrogen, where hydrogen functions as a second ligand. This easing effect could be the key factor leading to the outperformed Cr/PNP catalyst activity in ethylene tetramerization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom