Premium
POMzites: A roadmap for inverse design in metal oxide chemistry
Author(s) -
VilàNadal Laia
Publication year - 2021
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.26493
Subject(s) - inverse , oxide , transition metal , tungsten , nanotechnology , porosity , porous medium , tungsten oxide , chemistry , space (punctuation) , topology (electrical circuits) , materials science , combinatorial chemistry , computer science , catalysis , engineering , organic chemistry , mathematics , geometry , electrical engineering , operating system
Computationally exploring the space generated by the self‐assembly of known molecular metal oxides and the ability to predict new architectures is a challenging task. As a proof of concept, here, we propose narrowing it down to a new family of all‐inorganic porous materials named POMzites. Structures with new topologies, but aiming for pure inorganic systems, will be targeted initially. POMzites are composed of ring‐shaped tungsten oxide building blocks connected with transition metal linkers forming zero to three dimensional frameworks. Despite POMzites and zeolites having similar structures, the library of POMzites is an order of magnitude smaller than that of zeolites (14 POMzites vs 213 zeolites). The idea proposed in this perspective article is to accelerate the discovery of new POMzite porous frameworks materials using inverse design approaches.