z-logo
Premium
Shape and core‐excited resonances of thionucleobases
Author(s) -
Cheng HsiuYao,
Lin ChengJung
Publication year - 2018
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.25634
Subject(s) - excited state , density functional theory , uracil , thymine , atomic physics , fragmentation (computing) , range (aeronautics) , dna , core (optical fiber) , electron , chemistry , physics , materials science , computational chemistry , nuclear physics , biochemistry , biology , composite material , ecology , optics
Thionucleobases can be used in chemoradiation therapy of cancer. Shape resonances (SRs) and core‐excited resonances (CERs) can lead to fragmentation and eventually result in strand breaks of DNA. In particular, the more energetic CERs are believed to cause double‐strand breaks that can hardly be repaired. In this work, both the SRs and CERs of exemplary 2‐thiouracil, 4‐thiouracil, 2‐thiothymine, 4‐thiothymine, and 6‐aza‐2‐thiothymine are investigated using stabilization method in conjunction with long range corrected time‐dependent density functional theory. Results indicate that the energies of (1) π* 1 and π* 2 SRs, (2) n‐π* CERs, and (3) mixed resonances of π‐π* CERs with π* SRs can be significantly stabilized due to thionation of uracil or thymine. It is noteworthy that the resonant cases of (2) and (3) can be accessed by electrons even at energies below 4 eV. Consequently, the increased decay of temporary anions can enhance strand breaks of DNA.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here