Premium
Theoretical investigation of the weak interactions of rare gas atoms with silver clusters by resonance R aman spectroscopy modeling
Author(s) -
Yasrebi Sara,
Jamshidi Zahra
Publication year - 2017
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.25389
Subject(s) - excited state , raman spectroscopy , chemistry , resonance (particle physics) , spectral line , cluster (spacecraft) , raman scattering , density functional theory , ground state , spectroscopy , resonance raman spectroscopy , atomic physics , molecular physics , computational chemistry , physics , quantum mechanics , astronomy , computer science , optics , programming language
The interactions of rare gas atoms (Rg = Ar, Kr, and Xe) with small neutral and cationic silver clusters have been investigated by density functional methods and the effect of these weak interactions on the resonance Raman spectra of the complexes has been evaluated. The resonance Raman technique that depends on the properties of ground and excited state, seems deeply sensitive to the weak rare gas–metal cluster interactions, and the use of inert gases has been proven to be an excellent approach to recognize the ability of this technique to detect extremely weak interactions. In this work, forA g 4,6− R g , andA g 3,5 +− R g complexes the IR, normal and resonance Raman spectra have been calculated and the effect of rare gas–cluster stretching vibration (v Ag n− R g s t) on the pattern and the relative intensities of different spectra have been investigated. The resonance Raman spectra for the weakly interacted complexes (with the interaction energies less than −2.0 kcal/mol) exhibit thev Ag n− R g s tvibration with the detectable intensity that its intensity increases by going from Ag 6 –Ar to Ag 6 –Xe complex. Moreover, the resonance Raman spectra (based on the excited state gradient approximation) for high intensity nearly degenerate excited states, proved the effect of accumulation of the excited state charge density on the relative intensity ofv Ag n− R g s tvibration.