Premium
Exact solution of multidimensional hyper‐radial Schrödinger equation for many‐electron quantum systems
Author(s) -
Khan G. R.
Publication year - 2016
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.25101
Subject(s) - ansatz , wave function , schrödinger equation , physics , electron , quantum , quantum mechanics , cluster expansion , function (biology) , inverse , mathematical physics , mathematics , evolutionary biology , biology , geometry
In quantum theory, solving Schrödinger equation analytically for larger atomic and molecular systems with cluster of electrons and nuclei persists to be a tortuous challenge. Here, we consider, Schrödinger equation in arbitrary N‐dimensional space corresponding to inverse‐power law potential function originating from a multitude of interactions participating in a many‐electron quantum system for exact solution within the framework of Frobenius method via the formulation of an ansatz to the hyper‐radial wave function. Analytical expressions for energy spectra, and hyper‐radial wave functions in terms of known coefficients of inverse‐power potential function, and wave function parameters have been obtained. A generalized two‐term recurrence relation for power series expansion coefficients has been established. © 2016 Wiley Periodicals, Inc.