Premium
Spherical confinement of coulombic systems inside an impenetrable box: H atom and the Hulthén potential
Author(s) -
Roy Amlan K.
Publication year - 2015
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.24929
Subject(s) - degeneracy (biology) , eigenfunction , radius , work (physics) , eigenvalues and eigenvectors , isotropy , atom (system on chip) , physics , atomic physics , bound state , quantum mechanics , chemistry , bioinformatics , computer security , computer science , biology , embedded system
The generalized pseudospectral method is used to study spherical confinement in two simple Coulombic systems: (i) well celebrated and heavily studied H atom (ii) relatively less explored Hulthén potential. In both instances, arbitrary cavity size as well as low and higher states are considered. Apart from bound state eigenvalues, eigenfunctions, expectation values, quite accurate estimates of the critical cage radius for H atom for all the 55 states corresponding to n ≤ 10 , are also examined. Some of the latter are better than previously reported values. Degeneracy and energy ordering under the isotropic confinement situation are discussed as well. The method produces consistently high‐quality results for both potentials for small as well as large cavity size. For the H atom, present results are comparable to best theoretical values, while for the latter, this work gives considerably better estimates than all existing work so far. © 2014 Wiley Periodicals, Inc.