Premium
Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
Author(s) -
von Lilienfeld O. Anatole,
Ramakrishnan Raghunathan,
Rupp Matthias,
Knoll Aaron
Publication year - 2015
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.24912
Subject(s) - molecule , chemistry , test set , fourier series , invariant (physics) , fingerprint (computing) , atomic orbital , statistical physics , artificial intelligence , computational chemistry , computer science , mathematics , quantum mechanics , physics , mathematical analysis , organic chemistry , electron
We introduce a fingerprint representation of molecules based on a Fourier series of atomic radial distribution functions. This fingerprint is unique (except for chirality), continuous, and differentiable with respect to atomic coordinates and nuclear charges. It is invariant with respect to translation, rotation, and nuclear permutation, and requires no preconceived knowledge about chemical bonding, topology, or electronic orbitals. As such, it meets many important criteria for a good molecular representation, suggesting its usefulness for machine learning models of molecular properties trained across chemical compound space. To assess the performance of this new descriptor, we have trained machine learning models of molecular enthalpies of atomization for training sets with up to 10 k organic molecules, drawn at random from a published set of 134 k organic molecules with an average atomization enthalpy of over 1770 kcal/mol. We validate the descriptor on all remaining molecules of the 134 k set. For a training set of 10 k molecules, the fingerprint descriptor achieves a mean absolute error of 8.0 kcal/mol. This is slightly worse than the performance attained using the Coulomb matrix, another popular alternative, reaching 6.2 kcal/mol for the same training and test sets. © 2015 Wiley Periodicals, Inc.