Premium
Quantum Monte Carlo for Ab Initio calculations of energy‐relevant materials
Author(s) -
Wagner Lucas K.
Publication year - 2013
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.24526
Subject(s) - quantum monte carlo , monte carlo method , context (archaeology) , computer science , ab initio , density functional theory , statistical physics , quantum , field (mathematics) , physics , computational chemistry , chemistry , quantum mechanics , mathematics , paleontology , statistics , pure mathematics , biology
Humanity faces one of its greatest challenges in the move from fossil‐fuel based energy sources to alternative sources that do not produce greenhouse gases. New materials design is an important facet of the overall solution, since designed materials have the potential to increase efficiency in areas ranging from solar electricity generation to energy storage and distribution technologies. In that context, it is vital to be able to predict the properties of materials from basic physical principles. While traditional electronic structure techniques such as the ubiquitous density functional theory (DFT) are very important in this goal, there are many cases where current implementations of DFT fail in a design‐important way. Among other solutions, quantum Monte Carlo techniques have emerged as a practical way to obtain predictive power for challenging materials. This perspective highlights some recent advances in this field, concentrating in particular on the effect that quantum Monte Carlo methods have and will have on our energy challenge. © 2013 Wiley Periodicals, Inc.