z-logo
Premium
Electronic structure of francium
Author(s) -
Koufos Alexander P.,
Papaconstantopoulos Dimitrios A.
Publication year - 2013
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.24466
Subject(s) - bulk modulus , electronic structure , chemistry , condensed matter physics , lattice constant , superconductivity , density functional theory , alkali metal , local density approximation , fermi level , enthalpy , density of states , plane wave , thermodynamics , physics , computational chemistry , quantum mechanics , diffraction , organic chemistry , electron
This article presents the first calculations of the electronic structure of francium for the bcc, fcc, and hcp structures, using the linearized augmented plane wave (LAPW) method. Both the local density approximation (LDA) and generalized gradient approximation (GGA) were used to calculate the electronic structure and total energy of francium (Fr). The GGA and LDA both found the total energy of the hcp structure to be slightly below that of the fcc and bcc structures, respectively. This is in agreement with similar results for the other alkali metals where the bcc structure is found not to be the ground state in contradiction to experiment. The equilibrium lattice constant, bulk modulus, and superconductivity parameters were calculated. Calculations of the enthalpy of the system suggest a structural transition from hcp to bcc under a pressure of 0.57 GPa. Using the McMillan‐Gaspari‐Gyorffy theories, we found that under further pressures, in the range of 3–14 GPa, Fr could be a superconductor with critical temperature up to 7 K. This is consistent with the other alkali metals and originates from an increase of the d‐like density of states at the Fermi level, which makes the alkali metals behave like transition metals. © 2013 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here