z-logo
Premium
Plasmon resonances and plasmon‐induced charge transport in linear atomic chains
Author(s) -
Zhang Hong,
Yin Haifeng
Publication year - 2013
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.24426
Subject(s) - delocalized electron , plasmon , excitation , drude model , atomic physics , resonance (particle physics) , surface plasmon resonance , harmonic oscillator , molecular physics , condensed matter physics , chemistry , physics , quantum mechanics , nanoparticle
In linear hydrogen atomic chains, plasmon resonances and plasmon‐induced charge transport are studied by time‐dependent density functional theory. For the large linear chain, it is a general phenomenon that, in the longitudinal excitation, there are high‐energy resonances and a large low‐energy resonance. The energy of the large low‐energy resonance conforms to the results calculated by the classical Drude model. In order to explain the formation mechanism of the high‐energy resonances, we present a simple harmonic oscillator model. This model may reasonably account for the relationship between low‐energy and high‐energy resonances, and has a certain degree of universality. As the interatomic distance decreases, the current shows a gradual transition from insulator to metal. The current enhancement mainly depends on the local field enhancement associated with plasmon excitation, and the enhanced electron delocalization effect as a result of the decrease of the interatomic distance. © 2013 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here