Premium
Current‐density functional study of the HeH + molecular ion under a strong ultrashort magnetic field
Author(s) -
. Vikas
Publication year - 2012
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.24305
Subject(s) - density functional theory , ion , chemistry , atomic physics , magnetic field , vector potential , charge density , molecular physics , physics , computational chemistry , quantum mechanics , organic chemistry
Abstract The HeH + molecular ion under an ultrashort magnetic field on the order of 10 9 G is investigated through quantum fluid dynamics and a current‐density functional theory (CDFT) based approach, employing a vector exchange–correlation (XC) potential which depends on the electronic charge‐density as well as on the current‐density. The behavior of the exchange and correlation energies of the HeH + ion is analyzed and compared with those obtained using an approach based on the time‐dependent density functional theory (TD‐DFT) under similar computational constraints but employing a scalar XC potential dependent only on the electronic charge‐density. The CDFT‐based approach yields exchange and correlation energies as well as TD electronic charge‐densities drastically different from those obtained using the TD‐DFT‐based approach particularly, at typical TD magnetic field strengths. This is attributed to the nonadiabatic effects induced by the vector XC potential of the CDFT in the oscillating charge‐density of the HeH + ion, which are further explained in the terminology of quantum fluid dynamics. The vector XC potential of the CDFT‐based approach is observed to augment the magnetic interactions in the H 2 molecule and in the He 2 2+ion, whereas it opposes the magnetic interactions in the HeH + ion particularly, at the intermediate magnetic field strengths. © 2012 Wiley Periodicals, Inc.