Premium
Reconstructing interference fringes in slit experiments by complex quantum trajectories
Author(s) -
Yang CiannDong,
Su KuanChang
Publication year - 2012
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.24269
Subject(s) - double slit experiment , wave function , quantum , physics , classical mechanics , representation (politics) , probability density function , quantum mechanics , statistical physics , quantum probability , interference (communication) , quantum state , trajectory , quantum dynamics , quantum process , mathematics , computer science , statistics , computer network , channel (broadcasting) , politics , political science , law
There are external and internal representations for a quantum state Ψ. External representation is commonly adopted in the standard quantum mechanics by exploiting probability density function Ψ*Ψ to explain the observed interference fringes in slit experiments. On the other hand, in quantum Hamilton mechanics, the quantum state Ψ has a dynamical representation that reveals the internal mechanism underlying the externally observed interference fringes. The internal representation of Ψ is described by a set of Hamilton equations of motion, by which quantum trajectories of a particle moving in Ψ can be solved. In this article, millions of complex quantum trajectory connecting slits to a screen are solved from the Hamilton equations, and the statistical distribution of their arrivals on the screen is shown to reproduce the observed interference fringes. This appears to be the first quantitative verification of the equivalence between the trajectory‐based statistics and the wavefunction‐based statistics on slit experiments. © 2012 Wiley Periodicals, Inc.