Premium
Unified treatment of exactly solvable quantum potentials with confluent hypergeometric eigenfunctions: Generalized potentials
Author(s) -
Peña J. J.,
Morales J.,
GarcíaMartínez J.,
GarcíaRavelo J.
Publication year - 2012
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.24238
Subject(s) - eigenfunction , hypergeometric function , hypergeometric distribution , morse potential , confluent hypergeometric function , bound state , harmonic oscillator , mathematical physics , wave function , quantum , schrödinger equation , coulomb , mathematics , frobenius solution to the hypergeometric equation , harmonic , coulomb wave function , physics , quantum mechanics , eigenvalues and eigenvectors , mathematical analysis , pure mathematics , hypergeometric function of a matrix argument , electron
Abstract In this work, we propose an alternative approach to transform a general second‐order differential equation (DE) into a Schrödinger‐like equation. As a useful application of the proposal, we consider explicitly the case of the confluent hypergeometric (CH) DE with the aim to unify all potentials having CH eigenfunctions. That is, the proposed approach allows us to obtain generalized potential models that contain as particular cases the standard exactly solvable potentials with CH solutions such as the one‐ and three‐dimensional Harmonic, Morse, Coulomb, and other well known potentials. Besides, due that the proposed method is general, it can be straightforwardly applied to other DE in the search of bound‐states solutions for new potential models that could be useful in quantum chemistry. © 2012 Wiley Periodicals, Inc.