Premium
Hydrogen‐bonded complexes of nicotine with simple alcohols
Author(s) -
Senthilkumar Lakshmipathi,
Ghanty Tapan K.,
Kolandaivel Ponmalai,
Ghosh Swapan K.
Publication year - 2011
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.23304
Subject(s) - simple (philosophy) , nicotine , hydrogen , chemistry , computational chemistry , organic chemistry , philosophy , epistemology , neuroscience , biology
Ab initio and density functional theory studies have been performed on the hydrogen‐bonded complexes of neutral and protonated nicotine with ethanol, methanol, and trifluromethanol to explore their relative stability in a systematic way. Among all the hydrogen‐bonded nicotine complexes considered here, protonated forms in nicotine–ethanol and nicotine–methanol, and neutral form in nicotine–trifluromethanol complexes have been found to be the most stable. In the former two complexes, the proton attached to the pyrrolidine nitrogen acts as a strong hydrogen bond donor, whereas the pyrrolidine nitrogen atom acts as a hydrogen bond acceptor in the latter case. Neutral complex of nicotine with trifluromethanol has been found to possess a very short hydrogen bond (1.57 Å) and basis set superposition error corrected hydrogen bond energy value of 19 kcal/mol. The nature of the various hydrogen bonds formed has been investigated through topological aspects using Bader's atoms in molecules theory. From the calculated topological results, excellent linear correlation is shown to exist among the hydrogen bond length, electron density, and its Laplacian at the bond critical points for all the complexes considered. The natural bond orbital analysis has been carried out to investigate the charge transfer in the nicotine alcohol complexes. In contrast to the blue shifting behavior that is generally exhibited by other CH···O hydrogen bonds involving sp 3 carbon atom, the CH···O hydrogen bond in the protonated nicotine–ethanol and methanol complexes has been found to be proper with red shifting in nature. © 2011 Wiley Periodicals, Inc.