z-logo
Premium
Density functional computational studies on 2‐[(2,4‐Dimethylphenyl)iminomethyl]‐3,5‐dimethoxyphenol
Author(s) -
Tanak Hasan
Publication year - 2011
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.23206
Subject(s) - tautomer , chemistry , gibbs free energy , imine , density functional theory , enol , computational chemistry , standard enthalpy of formation , thermodynamics , equilibrium constant , organic chemistry , physics , catalysis
Abstract Density functional calculations of the structure, molecular electrostatic potential, and thermodynamic functions have been performed at B3LYP/6‐31G(d) level of theory for the title compound of 2‐[(2,4‐dimethylphenyl)iminomethyl]‐3,5‐dimethoxyphenol ( I ). To investigate the tautomeric stability, optimization calculations at B3LYP/6‐31G(d) level were performed for the enol and keto forms of I . Calculated results reveal that the enol form of I is more stable than its keto form. The predicted nonlinear optical properties of I are much greater than ones of urea. The changes of thermodynamic properties for the formation of the title compound with the temperature ranging from 200 to 500 K have been obtained using the statistical thermodynamic method. At 298.15 K, the change of Gibbs free energy for the formation reaction of I is 32.973 kJ/mol. The title compound can not be spontaneously produced from the isolated monomers at room temperature. The tautomeric equilibrium constant is computed as 0.868 at 298.15 K for enol‐imine↔keto‐amine tautomerization of I . In addition, natural bond orbital analysis of I was performed using the B3LYP/6‐31G(d) method. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here