Premium
Off‐center shallow donors in a spherical Si quantum dot with dielectric border
Author(s) -
Cristea M.,
Niculescu E. C.
Publication year - 2011
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.23179
Subject(s) - quantum dot , dielectric , electric field , electron , condensed matter physics , heterojunction , impurity , effective mass (spring–mass system) , binding energy , materials science , atomic physics , molecular physics , physics , nanotechnology , optoelectronics , quantum mechanics
Within the effective mass approximation and using a finite element method, the ground state energy and electron cloud localization of the shallow donors in a Si quantum dot (QD) with dielectric border are calculated. Simultaneous effects of dielectric mismatch (DM) at the core–shell interface, the impurity radial position, and the external electric field on the electronic properties are investigated. We found that (i) for a freestanding QD, the binding energy is strongly enhanced due to the additional interactions of the electron with the polarization charges; (ii) the electron cloud distribution can be easily modulated by varying the impurity position; (iii) the electric field‐induced shift in energy levels increases with the DM. Therefore, the electronic energy levels of the nanocrystal could be tuned by properly tailoring the heterostructure parameters (DM with the surrounding matrix, impurity location) as well as by varying the electric field strength. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012