Premium
Interstitial water and the formation of low barrier hydrogen bonds: A computational model study
Author(s) -
Lao KaUn,
Lankau Timm,
Fang TengI,
Zou JianWei,
Yu ChinHui
Publication year - 2011
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.23140
Subject(s) - chemistry , molecule , solvation , hydrogen bond , polarizability , computational chemistry , chemical polarity , polarizable continuum model , chemical physics , protonation , organic chemistry , ion
The B3LYP/D95+(d,p) analysis of the uncharged low barrier hydrogen bond (LBHB) between 4‐methyl‐1 H ‐imidazole (Mim) and acetic acid (HAc) shows that uncharged LBHBs can be formed either by adding three water molecules around the cluster or by placing the Mim–HAc pair in a dielectric environment created by a polarizable continuum model with a permittivity larger than 20.7. The permittivity of environment around uncharged LBHB can be lowered significantly by including water molecules into the system. A Mim–HAc LBHB stabilized with one water molecule observed in diethyl ether (ε = 4.34), with two water molecules in toluene (ε = 2.38), and with three water molecules in vacuo (ε = 1). Solvation models with different numbers of water molecules predict average differences in the proton affinities of the hydrogen bonded bases (ΔPA) for stable uncharged LBHB systems in vacuo to be 91.5 kcal/mol being different from the ΔPA values close to zero in charge‐assisted LBHB systems. The results clearly indicate that small amounts of interstitial water molecules at the active site of enzymes do not preclude the existence of LBHBs in biological catalysis. Our results also show that interstitial water molecules provide a useful clue in the search for uncharged LBHBs in an enzymatic environment and the number of water molecules can be used as a relative measure for the polarity around the direct environment of LBHBs. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012